FP-MAXFLOW: An Algorithm for Mining Maximum Relevant Patterns
DOI:
https://doi.org/10.13053/cys-22-2-2498Keywords:
Transactional databases, association mining, patterns recognition, frequent itemsets.Abstract
Algorithms for itemsets recognition and classification have been widely studied. The state of the art shows that most of the algorithms obtain all possible itemsets, others only obtain maximal ones. Both approaches have limitations for getting relevant correlations. Obtaining all itemsets imply many irrelevant patterns. By obtaining only maximal patterns important information could be ignored. The goal of this work is to offer an algorithm for obtaining the patterns which more efficiently could describe the correlations. The new algorithm, called FP-MAXFLOW is able to extract these, information efficiently with one database scan. The comparative studies show that it is a competitive solution according to other algorithms which are among the most used.Downloads
Published
2018-06-29
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.