Design of a Speed Adaptive Controller for a PMSM using Artificial Intelligence
DOI:
https://doi.org/10.13053/cys-20-1-2361Keywords:
PMSM, fuzzy logic, sliding mode, neural network.Abstract
Permanent magnet synchronous motors have been widely used in variable speed drives; however, the control scheme must ensure high requirements of dynamic performance. In this work, a comparative analysis of a synchronous motor response with four control strategies—conventional proportional integral, sliding mode, fuzzy logic, and neural networks—is exposed. The motor model and the current controller are described; this allows the control laws design. In addition, a nonlinear observer for estimating the rotor speed and load torque is designed. The performance of each driver is analyzed using time simulations where the motor is subjected to disturbances and reference changes. The proposed control technique using neural networks exhibits the best performance because it can adapt to every condition, demanding low computational effort for an online operation and considering the system nonlinearities.Downloads
Published
2016-03-31
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.