Estudio de la dinámica global para un modelo de Evasión-Inmune de un tumor cancerígeno
DOI:
https://doi.org/10.13053/cys-18-4-1920Keywords:
Conjunto Compacto Invariante, Dominio Acotado Positivamente Invariante, Lyapunov, Cáncer, Sistema BiológicoAbstract
En este documento se estudia la dinámica global del modelo de Evasión-Inmune presentado por Arciero, Jackson y Kirschner, el cual describe la interacción entre células efectoras, células cancerígenas y las citocinas IL-2 y TGF-β en el sitio del tumor. El sistema modela distintos comportamientos, como lo son: puntos de equilibrio, órbitas periódicas y ciclos límite estables. Utilizando el método de Localización de Conjuntos Compactos Invariantes se logra definir un dominio en el espacio de estados donde se localizan todas las dinámicas que exhibe el modelo de Evasión-inmune. La localización de dicho dominio es importante debido a que proporciona información sobre la salud del individuo en corto y largo plazo. Los límites de tal dominio representan los valores mínimos y máximos de las variables de estado y se expresan mediante desigualdades algebraicas dadas por una combinación de los parámetros del sistema. Adicionalmente, mediante una función candidata de Lyapunov, se demuestra que la región de localización es un dominio positivamente invariante, lo que permite asegurar que dada cualquier condición inicial, las trayectorias del sistema no divergen. Finalmente, se presentan simulaciones numéricas y se realiza un análisis de las posibles implicaciones biológicas de los resultados obtenidos.Downloads
Additional Files
Published
2014-12-31
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.