Development of a Customized Image Set for Object Detection in a Materials Synthesis Lab Using Convolutional Neural Networks
DOI:
https://doi.org/10.13053/cys-28-4-5359Keywords:
Object detection, convolutional neural networks (CNNs), materials synthesis laboratory, custom image datasetAbstract
Convolutional Neural Networks (CNNs) have shown remarkable performance in object detection tasks, especially when trained on large and diverse datasets. However, in specialized domains such as materials synthesis laboratories, generic datasets may not capture the specific objects of interest or the unique challenges of the environment. This paper presents the development of a custom image dataset tailored for object detection in a materials synthesis laboratory. The dataset includes annotated images of equipment, chemicals, and other objects commonly found in such environments. We also describe the process of collecting and labeling the dataset, including the challenges faced and the strategies used to address them. To demonstrate the utility of the dataset, we trained a CNN model using the popular YOLO (You Only Look Once) architecture and evaluated its performance on a test set. The results show that our custom dataset enables the CNN model to accurately detect objects in materials synthesis laboratories, highlighting the importance of domain-specific datasets for enhancing the performance of object detection systems in specialized environments.Downloads
Published
2024-12-21
Issue
Section
Articles of the Thematic Section
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.