Combining Embeddings and Domain Knowledge for Job Posting Duplicate Detection
DOI:
https://doi.org/10.13053/cys-28-4-5306Keywords:
Job Posting Analysis, Similarity Embeddings, Domain Knowledge, Duplicate Detection, Deployed ApplicationAbstract
Job descriptions are posted on many online channels, including company websites, job boards or social media platforms. These descriptions are usually published with varying text for the same job, due to the requirements of each platform or to target different audiences. However, for the purpose of automated recruitment and assistance of people working with these texts, it is helpful to aggregate job postings across platforms and thus detect duplicate descriptions that refer to the same job. In this work, we propose an approach for detecting duplicates in job descriptions. We show that combining overlap-based character similarity with text embedding and keyword matching methods lead to convincing results. In particular, we show that although no approach individually achieves satisfying performance, a combination of string comparison, deep textual embeddings, and the use of curated weighted lookup lists for specific skills leads to a significant boost in overall performance. A tool based on our approach is being used in production and feedback from real-life use confirms our evaluation.Downloads
Published
2024-12-03
Issue
Section
Articles of the Thematic Section
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.