Classification of Fall Events in the Elderly Using a Thermal Sensor and Machine Learning Techniques
DOI:
https://doi.org/10.13053/cys-28-4-4809Keywords:
Elderly care, machine learning, sensor monitoring, fall events.Abstract
As reported by the WHO, falls constitute the second leading cause of unintentional injury death worldwide. Particularly, adults older than 60 years suffer the most significant number of fatal falls or serious injuries, with nearly 30% of individuals over 65 reporting at least one fall annually, a risk that increases with age. The anticipated growth in life expectancy and the resulting larger aging population accentuates the economic burden associated with falls. Consequently, the identification of effective strategies for fall prevention and early detection in the elderly has become a topic of great relevance. In this study, we propose a non-invasive fall detection system based on a thermal sensor and a supervised machine-learning algorithm. The experimental dataset, generated by students through simulations of both fall and non-fall events, included the recording of room temperatures using a thermal sensor, along with the associated data labeling. For fall event detection, we evaluated three well-known supervised machine learning models: a Support Vector Machine, a Random Forest, and a Convolutional Neural Network. The experimental results demonstrate that these models exhibit robust capabilities in distinguishing between falls and non-fall events, consistently achieving performances above 95% across various evaluation metrics.Downloads
Published
2024-12-03
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.