A Comprehensive Review on Automatic Text Summarization
DOI:
https://doi.org/10.13053/cys-27-4-4792Keywords:
Text summarization, natural language processing, information extractionAbstract
This article presents a broad overview of Automatic Text Summarization (ATS) as a downstream Natural Language Processing (NLP) task. We explore the bibliometrics, available data, methods, summary evaluation techniques, and summarization models. We start from the early methods of text summarization suggested by earlier research on the problem in the middle of the 20th century and follow the developments in the methods, approaches, and data available until recent times. We observe Artificial Neural Network (ANN) models replacing Extractive Summarization methods in favor of Abstractive ones. Finally, we compare the performance of the state-of-the-art summarization models on different datasets from various domains. And conclude that Abstractive Summarization models outperform Extractive ones based on the ROUGE score because, most of the time, “golden” or reference summaries are abstractive. However, that does not necessarily mean that Extractive summaries are bad. It only suggests that the Extractive Summary lexicon fails to match the reference summary lexicon sufficiently. Thus, we suppose there have to be other means to assess Extractive Summary quality, and at the same time, there is a need to evaluate the reference summary quality as well.Downloads
Published
2023-12-27
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.