Comparison of Transfer Style Using a CycleGAN Model with Data Augmentation
DOI:
https://doi.org/10.13053/cys-27-4-4775Keywords:
Generative adversarial network, image-to-image translation, data augmentation, cycle consistencyAbstract
Image-to-image translation (I2I) is a specialized technique aimed at converting images from one domain to another while retaining their intrinsic content. This process involves learning the relationship between an input and its corresponding output image through a dataset of aligned pairs. Our study utilizes the CycleGAN model to pioneer a method for transforming images from the domain of Monet’s paintings to a domain of varied photographs without the need for paired training examples. We address challenges such as mode collapse and overfitting, which can affect the integrity and quality of the translated images. Our investigation focuses on enhancing the CycleGAN model’s performance and stability through data augmentation strategies, such as flipping, mirroring, and contrast enhancement. We propose that judicious dataset selection for training can yield superior outcomes with less data compared to indiscriminate large-volume training. By online scraping Monet’s artwork and curating a diverse, representative image subset, we fine-tuned our model. This targeted approach propelled our results to 2nd place in the Kaggle challenge ”I am something of a Painter Myself” as of August 3rd, 2023, demonstrating the efficacy of our enhanced training protocol.Downloads
Published
2023-12-17
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.