Deep Learning-Based Classification and Segmentation of Sperm Head and Flagellum for Image-Based Flow Cytometry
DOI:
https://doi.org/10.13053/cys-27-4-4772Keywords:
Deep learning, sperm, segmentation, classification, image-based flow cytometryAbstract
Image-Based Flow Cytometry (IBFC) is a potent tool for the detailed analysis and quantification of cells in intricate samples, facilitating a comprehensive understanding of biological processes. This study leverages the ResNet50 model to address IBFC’s object-defocusing issue, an inherent challenge when imaging a 3D object with stationary optics. A dataset of 604 mouse sperm IBFC images (both bright field and fluorescence) underpins the exceptional capability of the ResNet50 model to reliably identify optimally focused images of the sperm head and flagella (F1-Score of 0.99). A U-Net model was subsequently employed to accurately segment the sperm head and flagellum in images selected by ResNet50. Notably, the flagellum presents a significant challenge due to its sub-diffraction transversal dimensions of 0.4 to 1 micrometers, resulting in minimal light intensity gradients. The U-Net model, however, demonstrates exceptional efficacy in precisely segmenting the flagellum and head (dice = 0.81). The combined ResNet50/U-Net approach offers significant promise for enhancing the efficiency and reliability of sperm analysis via IBFC, and could potentially drive advancements in reproductive research and clinical applications. Additionally, these innovative strategies may be adaptable to the analysis of other cell types.Downloads
Published
2023-12-17
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.