MiniCovid-Unet: CT-Scan Lung Images Segmentation for COVID-19 Identification
DOI:
https://doi.org/10.13053/cys-28-1-4697Keywords:
Deep learning, image segmentation, COVID-19, computer tomography, Mask R-CNN, Unet, MiniCovid-Unet.Abstract
Detection and segmentation of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV2 or COVID-19) is a difficult task due the different kinds of shapes, sizes and positions of the injury. Medical institutions have vast challenges because there is an urgent need for efficient tools to improve the diagnosis of COVID-19 patients. Computer tomography images (CT) are necessary for medical specialists to diagnose the patient’s condition. Nevertheless, there is a lack of both in Medical Centers, mainly in rural areas. The manual analysis of CT images is time-consuming; in addition, most images have low contrast, and it is possible to find blood vessels in the background, so the difficulty of a suitable diagnosis increases. Nowadays, deep learning methods are an alternative method to perform the detection and segmentation task. In this work, we propose a novel light model to detect and identify COVID-19 using CT images: MiniCovid-Unet. It is an improved version of U-net; main differences reside on the decoder and encoder architecture, MiniCovid-Unet needs fewer convolution layers and filters because it focuses only on COVID-19 images. Also, as a result of employing fewer parameters, it can be trained in less time, and the resulting model is light enough to be downloaded to a mobile device. In this way, it is possible to have a quick and confident diagnosis in remote areas, where there exists an absence of internet connection and medical specialists.Downloads
Published
2024-03-20
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.