Comparative Analysis of the Bacterial Foraging Algorithm and Differential Evolution in Global Optimization Problems
DOI:
https://doi.org/10.13053/cys-27-2-4622Keywords:
Bacterial foraging, differential evolution, global optimization, metaheuristicsAbstract
There are bio-inspired metaheuristics in nature rarely used in areas where there is not domain or knowledge of computational algorithms, to mention some, medicine, finance and administration. TS-MBFOA, a bacteria-based algorithm and the Differential Evolution Algorithm (DEA), are metaheuristic algorithms proposed for the optimization of complex problems mathematically modeled as linear or non-linear problems. In this paper, these algorithms are implemented to analyze their performance in the search for better solutions in constrained optimization problems. Tests were conducted on four optimization problems known in the literature as benchmark problems. Both algorithms were run in 30 independent executions for each problem with the same number of generations and evaluations. Although the parameters of each algorithm are different, the number of evaluations was selected for a fair comparison. Results are similar for both algorithms, however, DEA obtains better results for the problem with the larger number of constraints. Additionally, DEA generates solutions in less time than TS-MBFOA. The nonparametric Wilcoxon Signed Rank Test indicates significant differences in only 3 problems. The convergence graph of both algorithms for each problem shows that after 50 generations, both algorithms are close to the best known solution in the state of the art.Downloads
Published
2023-06-15
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.