Optimizing the Performance of the IDS through Feature-Relevant Selection Using PSO and Random Forest Techniques
DOI:
https://doi.org/10.13053/cys-28-2-4579Keywords:
Classification, Feature selection, Intrusion detection system, Machine learning, NSL-KDD data set, Particle swarm optimization, Random forestAbstract
As the world becomes more digitalized, the potential for attacks increases, therefore, effective techniques for intrusion detection on network are needed. In this study, the authors propose a two steps approach. First, the Correlation-based Features Selection as a feature evaluator based on Particle Swarm Optimization is used to select the relevant features. This evaluator is compared with other evaluators. Second, the Random Forest algorithm is used to classify attacks in a network. A comparative study is also performed conducted with different classifiers such as Na¨ıve Bayes, Stochastic Gradient Descent, Deep Learning, k-Nearest Neighbors and Support Vector Machine. Experiments were conducted on the NSL-KDD database and the results show an efficiency of 98.78% for binary classification. The performance results obtained show that the proposed technique performs better than other competing techniques.Downloads
Published
2024-06-12
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.