Automatic Depression Detection in Social Networks Using Multiple User Characterizations
DOI:
https://doi.org/10.13053/cys-27-1-4540Keywords:
Automatic depression detection, user characterizations, social network analysis, information fusionAbstract
Depression is rapidly becoming one of the most common illnesses worldwide, currently affecting a significant number of people. These people may show different signs of depression depending on a number of characteristics (e.g., age, sex, personality, mood, etc.). Experts often use these signs to diagnose and monitor depression. However, due to the difficulty of obtaining this information through traditional methods, the use of social networks to characterize users has proven to be a valuable resource. In this paper, we study the potential of various user characterizations for the task of automatic depression detection. We consider two social networks and a variety of models for fusing the characterizations. In particular, we propose the use of a range of networks that learn to weight the contribution of each characterization from the data. We show that, using this model, the depression detection performance outperforms the state-of-the-art results on the two data sets considered. In addition, we present interesting findings on the correlation of the characterizations considered in the information fusion network.Downloads
Published
2023-03-30
Issue
Section
Articles of the Thematic Section
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.