Edges-enhanced Convolutional Neural Network for Multiple Sclerosis Lesions Segmentation
DOI:
https://doi.org/10.13053/cys-27-1-4535Keywords:
Convolutional neural networks, focal loss, multiple sclerosis, lesions segmentation, magnetic resonance imagingAbstract
Multiple sclerosis (MS) segmentation is a crucial task that helps to monitor the progression of that condition and to investigate how efficient is the treatment provided to a patient. Convolutional Neural Networks (CNN) have been successfully employed in MS lesion segmentation in recent years, but still have problems in segmenting voxels in the boundaries of the lesions. In this work, we present a modified CNN that assign more importance in learning hard-to-classify voxels close to the boundaries of the MS lesions. During the training process, we performed a stratified sampling to dynamically increase the penalization of voxels in the neighborhood around MS lesions boundaries. We prove that the stratified sampling strategy increases the representation of voxels near to the neighborhood of the edges and retrieves more accurate results in terms of Dice similarity coefficient compared to existing methods that uses uniform sampling. To test our approach, the 2015 Longitudinal MS Lesion Segmentation Challenge dataset was used, obtaining Dice > 0.7, which is comparable to the performance of human experts.Downloads
Published
2023-03-30
Issue
Section
Articles of the Thematic Section
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.