Impact of Bayesian Approach to Demand Management in Supply Chains for the Consumption of Dynamic Products

Authors

  • Jose Antonio Taquia Gutierrez Universidad de Lima

DOI:

https://doi.org/10.13053/cys-27-2-4382

Keywords:

Supply chain, Bayesian approach, retail products, critical fractile, balanced operations

Abstract

Bayesian approach was applied to the management of the supply chain in a dynamic food product portfolio for a company in the retail sector. We propose a quasi-experimental method considering pre and posttest and a control group. The sample size of 93 products, out of a population of 120 products from two categories: classic sauces and gourmet sauces. R and Python programming languages were used and libraries for random sampling of the a priori distribution of the products to obtain posterior values area presented on the research. Forecast accuracy increased with the Bayesian approach by 10%. Likewise, it was possible to reduce the coverage inventory from 2 to 1.2 months and the discrepancy between the values of the Bayesian estimate with the traditional method was possible to reach a 5% error in the variation

Author Biography

Jose Antonio Taquia Gutierrez, Universidad de Lima

Ingeniero Industrial y Sistemas con estudios de Doctorado en Ingeniería Industrial por la Universidad Nacional Mayor de San Marcos. Tiene amplia experiencia en el diseño e implementación de tecnología orientada al análisis de datos y metodología de investigación científica con proyectos desarrollados en operaciones, cadenas de abastecimiento, analítica en retail y servicios de educación.

Downloads

Published

2023-06-17

Issue

Section

Articles