Distributional Word Vectors as Semantic Maps Framework
DOI:
https://doi.org/10.13053/cys-26-3-4356Keywords:
Word embeddings, distributional wordvectors, semantic mapsAbstract
Distributional Semantics Models are one of the most ubiquitous tools in Natural Language Processing. However, it is still unclear how to optimise such models for specific tasks and how to evaluate them in a general setting (having ability to be successfully applied to any language task in mind). We argue that benefits of intrinsic distributional semantic models evaluation could be questioned since the notion of their “general quality” possibly does not exist; distributional semantic models, however, can be considered as a part of Semantic Maps framework which formalises the notion of linguistic representativeness on the lexical level.Downloads
Published
2022-08-31
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.