What’s Your Style? Automatic Genre Identification with Neural Network
DOI:
https://doi.org/10.13053/cys-26-3-4350Keywords:
Genre identification, text classification, machine learning, neural networks, word embedding, stylisticsAbstract
Genre identification is an important task in natural language processing that can be useful for many practical and research purposes. The challenge of this task is that genre is not a homogeneous and unequivocal property of the texts and it is often hard to separate from the topic. In this paper we compare the performance of two different automatic genre identification methods. We classified six text types: literary, academic, legal, press, spoken and personal. In one part of our research we did experiments with traditional machine learning methods using linguistic, n-gram and error features. In the other part we tested the same task with a word embedding based neural network. In this part we did experiments with different training data (words only, POS-tags only, words and POS-tags etc.). Our results revealed that neural network is a suitable method for this task while traditional machine learning showed significantly lower performance. We gained high (around 70%) accuracy with our word embedding based method. The results of the different text categories seemed to depend on the stylistic properties of the studied genres.Downloads
Published
2022-08-31
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.