Adaptation of Number of Filters in the Convolution Layer of a Convolutional Neural Network Using the Fuzzy Gravitational Search Algorithm Method and Type-1 Fuzzy Logic
DOI:
https://doi.org/10.13053/cys-26-2-4265Keywords:
CNN, FGSA, number of filters, fuzzy logic, fuzzy systems, adaptation of parameters, ORL database, feret database, MNIST databaseAbstract
This paper presents a model of the search for adaptation of parameters and the creation of the membership functions of various fuzzy systems created using the fuzzy gravitational algorithm (FGSA). These fuzzy systems were created to find the optimal number of filters to enter a convolutional neural network (CNN) with an architecture of two convolution layers, as well as two pooling layers respectively and a classification layer, which is responsible for recognizing images. With this model, the results obtained by optimizing this CNN with the FGSA algorithm and the adaptation of parameters using this same algorithm are compared to form the membership functions of fuzzy systems. Both methods and their results are comparing with each other.Downloads
Published
2022-06-15
Issue
Section
Articles of the Thematic Issue
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.