Deep Learning Approach for Aspect-Based Sentiment Analysis of Restaurants Reviews in Spanish
DOI:
https://doi.org/10.13053/cys-26-2-4258Keywords:
Customer reviews, polarity classification, sentiment analysisAbstract
Online reviews of products and services have become important for customers and enterprises. Recent research focuses on analyzing and managing those kinds of reviews using natural language processing. This paper focuses on aspect-based sentiment analysis for reviews in Spanish. First, the reviews data sets are normalized into different inputs of the neural networks. Then, our approach combines two deep learning models architectures to determine a positive or negative assessment and identify the most important characteristics or aspects of the text. We develop two architectures for aspect detection and three architectures for sentiment analysis. Merging the deep learning models, we tested our approach in restaurant reviews and compared them with state-of-the-art methods.Downloads
Published
2022-06-15
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.