Evolutionary Instance Selection Based on Preservation of the Data Probability Density Function
DOI:
https://doi.org/10.13053/cys-26-2-4255Keywords:
Instance selection, probability density function, evolutionary algorithmAbstract
The generation of massive amounts of data has motivated the use of machine learning models to perform predictive analysis. However, the computational complexity of these algorithms depends mainly on the number of training samples. Thus, training predictive models with high generalization performance within a reasonable computing time is a challenging problem. Instance selection (IS) can be applied to remove unnecessary points based on a specific criterion to reduce the training time of predictive models. This paper introduces an evolutionary IS algorithm that employs a novel fitness function to maximize the similarity of the probability density function (PDF) between the original dataset and the selected subset, and to minimize the number of samples chosen. This method is compared against six other IS algorithms using four performance measures relating to the accuracy, reduction rate, PDF preservation, and efficiency (which combines the first three indices using a geometric mean). Experiments with 40 datasets show that the proposed approach outperforms its counterparts. The selected instances are also used to train seven classifiers, in order to evaluate the generalization and reusability of this approach. Finally, the accuracy results show that the proposed approach is competitive with other methods and that the selected instances have adequate capabilities for reuse in different classifiers.Downloads
Published
2022-06-15
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.