Hierarchical Decision Granules Optimization through the Principle of Justifiable Granularity
DOI:
https://doi.org/10.13053/cys-26-2-4252Keywords:
Granular computing, neuro-fuzzy, sugeno, hierarchical decision granules, interpretable machine learningAbstract
Interpretable Machine Learning (IML) aims to establish more transparent decision processes where the human can understand the reason behind the models’ decisions. In this work a methodology to create intrinsically interpretable models based on fuzzy rules is proposed. There is a selection to identify the rule structure by extracting the most significant elements from a decision tree by the principle of justifiable granularity. There are defined hierarchical decision granules and their quality metrics. The proposal is evaluated with ten publicly available datasets for classification tasks. It is shown that through the principle of justified granularity, rule-based models can be greatly compressed through their fuzzy representation, not only without significantly losing performance but even with compression of 40% it manages to exceed the performance of the initial model.Downloads
Published
2022-06-15
Issue
Section
Articles of the Thematic Issue
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.