Analysis of CNN Architectures for Human Action Recognition in Video
DOI:
https://doi.org/10.13053/cys-26-2-4245Keywords:
Human action recognition, convolutional neural network, HMDB51Abstract
Every year, new Convolutional Neural Network (CNN) architectures appear to deal with different problems in the activity of image and video recognition. These architectures usually work along the ImageNet dataset for looking for the best performance of the CNNs without taking into account the video task where they are used. This can represent a problem if the task is Human Action Recognition (HAR) in video, since the CNN architectures are pre-trained with an image dataset that can practically contain any object, while HAR problem requires consecutive frames of people doing actions. To prove the idea that using CNNs pre-trained on an image dataset does not always achieve the best performance on a video dataset and that, therefore, it is worth comparing the performance of different CNNs under similar circumstances for the HAR problem, this work proposes an analysis between eight different CNN architectures. Each one of the CNN was exclusively trained with RGB images, which were extracted from the frames of the different classes of videos of HMDB51 dataset. To make the classification of an activity in video, we average the predictions taking into account the successes. We also made some ensembles with the best performance CNNs to measure the improvement in accuracy. Our results suggest that Xception is a strong baseline model that could be used by the community to make their comparisons of their proposals more robust.Downloads
Published
2022-06-15
Issue
Section
Articles of the Thematic Issue
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.