Collaborative Recommender System based on Improved Firefly Algorithm
DOI:
https://doi.org/10.13053/cys-26-2-4232Keywords:
Clustering, collaborative filtering, firefly algorithm, recommender system, swarm intelligenceAbstract
A recommendation system aims to capture the taste of the customer and predict relevant items which he/she may be interested in buying. There are many algorithms for generating recommendations in literature, however, most of them are non-optimal and do not have the capability to handle big data. In this paper, a collaborative recommendation system is proposed based on improved firefly algorithm. The firefly algorithm is used to generate optimal clusters which provide effective recommendations. The proposed algorithm works in two phases: Phase I which generates the clusters with firefly algorithm and Phase II gives real time recommendations. The firefly algorithm has been implemented in Apache Spark to give it the capability of handling big data. The combination of improved firefly-based clustering and Apache Spark makes it much faster and optimal than the state-of-the-art recommendation models. For experiments, movie-lens dataset has been utilized and different evaluation metrics have been used for performance analysis. The results show that the proposed method gives better results compared to existing methods.Downloads
Published
2022-06-15
Issue
Section
Articles of the Thematic Issue
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.