Topic-Aware Sentiment Analysis of News Articles
DOI:
https://doi.org/10.13053/cys-26-1-4179Keywords:
Mass media, natural language processing, news articles, sentiment analysisAbstract
We consider the problem of sentiment analysis in news media articles cast as a three-way classification task: negative, positive, or neutral. We show that subdividing the training corpus by topic (local news, sports, hi-tech, and others) and training separate sentiment classifiers for each sub-corpus improves classification F1 scores. We use topics since some words carry different sentiments in different domains: e.g., the word “force” is typically positive in the sports domain but negative in the political domain. Our experiments on the Kaggle dataset with sentiment-labeled Kazakhstani news articles in Russian language using the Convolutional Neural Network (CNN) model partially proved our hypothesis, showing that for the most prominent “kz” (local news) topic, we achieve an F1 score of 0.70, which is greater than the baseline model trained without the topic-awareness showing just 0.67. Topic-aware improves F1 scores in some topics, but due to the topic/class imbalance further research is needed. However, the performance in terms of F1 over all the corpus does not improve or the improvements are very small. Moreover, our approach shows better results on topics with many text samples than those with relatively small amounts of articles.Downloads
Published
2022-03-26
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.