Breast, Lung and Liver Cancer Classification from Structured and Unstructured Data
DOI:
https://doi.org/10.13053/cys-26-1-4167Keywords:
Cancer classification, structured and unstructured data, deep learning for unstructured data representation, machine learning models, electronic health recordsAbstract
Currently, cancer is a worldwide public health problem. Machine and deep learning techniques hold great promise in healthcare by analyzing Electronic Health Records (EHR) that contain a large collection of structured and unstructured data. However, most research has been done with structured data, and valuable data is also found in doctor’s plain-text notes. Thus, this paper proposes an approach to classify breast, liver, and lung cancer based on structured and unstructured data obtained from the MIMIC-II clinical database by using machine and deep learning techniques. In particular, the Paragraph Vector algorithm is used as a deep learning approach to text representation. The goal of this work is to help physicians in early diagnosis of cancer. The proposed approach was tested on a balanced dataset of breast, liver, and lung cancer patient records. Pre-processing is done with structured and unstructured data, and the result is used as input variables to three machine learning models: Support Vector Machines, Multi Layer Perceptron, and Adaboost-SAMME. Then, the scoring metrics for these models are calculated in different training data configurations to choose the best performing model for classification. Results show that the best performing model was obtained with MLP, achieving 89% precision using unstructured data.Downloads
Published
2022-03-26
Issue
Section
Articles of the Thematic Issue
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.