Comparative Analysis of K-Means Variants Implemented in R
DOI:
https://doi.org/10.13053/cys-26-1-4158Keywords:
K-means, clustering, cluster analysisAbstract
One of the ways of acquiring new knowledge or underlying patterns in data is by means of clustering algorithms or techniques for creating groups of objects or individuals with similar characteristics in each group and at the same time different from the other groups. There is a consensus in the scientific community that the most widely used clustering algorithm is K-means, mainly because its results are easy to interpret and there are different implementations. In this paper we present an exploratory analysis of the behavior of the main variants of the K-means algorithm (HartiganWong, Lloyd, Forgy and MacQueen) when solving some of the difficult sets of instances from the Fundamental Clustering Problems Suite (FCPS) benchmark. These variants are implemented in the R language and allow finding the minimum and maximum intra-cluster distance of the final clustering. The different scenarios are shown with the results obtained.Downloads
Published
2022-03-26
Issue
Section
Articles of the Thematic Issue
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.