A Scientometric Analysis of Transient Patterns in Recommender System with Soft Computing Techniques
DOI:
https://doi.org/10.13053/cys-25-1-3891Keywords:
Fuzzy logic, genetic algorithm, neural networks, recommender system, scientometric analysis, web of scienceAbstract
Recommender systems recommend items to users based on their interests and have seen tremendous growth due to the use of internet and web services. Recommendation systems have seen escalating growth rate since late 1990’s. A query on Google Scholar (famous research based search engine) gives 175,000 articles for the query “recommender system”. With such a large database of research/application articles, there arises a need to analyses the data so as to fulfill the basic requirements of effectively understanding the potential of the quantum of literature available so far. The study focuses on the topic of recommender system with various soft computing techniques such as fuzzy logic, neural network and genetic algorithm. The major contribution of this work is the demonstration of progressive knowledge for domain visualization and analysis of recommender system with soft computing techniques. The analysis is supported by various scientometric indicators such as Relative Growth Rate (RGR), Doubling Time (DT), Co-Authorship Index (CAI), AuthorProductivity, Degree of Collaboration, Research Priority Index (RPI), Half Life, Country wise Productivity, Citation Analysis, Page Length Distribution, Source Contributors. This research presents first of its kind scientometric analysis on “recommender system with soft computing techniques”. The present work provides useful parameters for establishing relationships between quantifiable data and intangible contributions in the field of recommender systems.Downloads
Published
2021-02-15
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.