A First CNN-based Approach Towards Autonomous Flight for Object Lifting
DOI:
https://doi.org/10.13053/cys-24-3-3482Keywords:
MAV, load lifting, deep learningAbstract
Cable-suspended load transportation with Micro Air Vehicles (MAV) is a well-studied topic as it reduces mechanical complexity, the weight of the system, and energy consumption. However, it is always taken for granted that the load is already attached tocable. In this work, we present a methodology to autonomously lift a cable-suspended load with a MAV using a Deep-Learning based Object Detector as the perception system, whose detections are used by a PID controller and a state machine to perform the lifting procedure. We report an autonomous lifting success rate of 40%, an encouraging result considering that we carry out this task in a realistic environment, not in simulation. The Object Detector model has been tailored to detect the 2D position and 3D orientation of a bucket-shaped load and trained with a fully synthetic dataset. However, the model is successfully used in the real world. The control system deals with the oscillatory behavior of the cable and ground effects using low-level controllers. Future work includes improvements to the perception system to also detect a hook-shaped grasper.Downloads
Published
2020-09-29
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.