Comparación de arquitecturas de redes neuronales convolucionales para el diagnóstico de COVID-19
DOI:
https://doi.org/10.13053/cys-25-3-3453Keywords:
Redes neuronales convolucionales, COVID-19, transferencia de aprendizajeAbstract
Las redes neuronales convolucionales (CNNs, por sus siglas en inglés) han demostrado un gran potencial para resolver problemas de clasificación con imágenes médicas. En esta investigación, se evaluaron treinta y dos arquitecturas CNNs, y se compararon para realizar el diagnóstico COVID-19 mediante el uso de imágenes radiográficas. Se utilizó una colección de 5,953 imágenes de rayos X de tórax frontales (117 imágenes de pacientes diagnosticados con COVID-19, 4,273 de pacientes con neumonía no relacionada con COVID-19 y 1,563 imágenes etiquetadas como Normal provenientes de pacientes saludables) para entrenar y evaluar las arquitecturas. En este artículo, las métricas de evaluación implementadas están en concordancia con las condiciones requeridas para un conjunto de datos desequilibrado. Siete de los treinta y dos modelos evaluados lograron una clasificación de rendimiento excelente (≥90%) según la métrica del Índice de precisión equilibrada (IBA, por sus siglas en inglés). Los tres modelos de CNNs que obtuvieron los mejores resultados en esta investigación fueron Wide_resnet101_2, Resnext101_32x8d y Resnext50_32x4d, los cuales obtuvieron un valor de precisión de clasificación del 97.75%. El problema de sobreajuste en los modelos se descartó de acuerdo con el comportamiento de los valores de precisión tanto en el conjunto de datos de entrenamiento, como en los de prueba. El mejor modelo para el diagnóstico de COVID-19 es el Resnext101_32x8d, de acuerdo con la matriz de confusión y las métricas logradas de sensibilidad, especificidad, F1-score, G_mean, IBA y tiempo de entrenamiento de 97.75%, 96.40%, 97.75%, 97.06%, 94.34%, 76.98 min, respectivamente.Downloads
Published
2021-08-18
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.