Hybrid Model of Convolutional Neural Network and Support Vector Machine to Classify Basal Cell Carcinoma
DOI:
https://doi.org/10.13053/cys-25-1-3431Keywords:
Basal cell carcinoma, convolutional neural network, support vector machine, deep learningAbstract
Skin cancer is one of the most common types of cancer in humans, it covers about one third of all neoplasms. Within skin cancer we find basal cell carcinoma (BCC), this being the most frequent type of cancer worldwide. Solutions with convolutional neural networks generally use the Softmax layer (classic model) to perform a BCC classification, however, in other similar fields such as image classification of microscopic bacteria they have replaced this Softmax layer with a support vector machine (SVM) achieving a better result. Given this, we propose a hybrid model of convolutional neural network and a support vector machine (CNN + SVM) to classify the BCC. Our model is composed of 4 convolution blocks with 32, 64 and 128 filters to carry out the extraction of characteristics and then pass it to the classifier, to which the L1-SVM loss function is implemented. The average results obtained for the CNN + SVM hybrid model were measured with the precision, accuracy, recall and F1-score metrics, obtaining 96.200%, 96.200%, 96.205% and 96.200% respectively compared to the classical model for the metrics of precision, accuracy, recall and F1-score where 95.661%, 95.673%, 95.661%, 95.660% respectively were obtained. The results show that the hybrid model achieves better results than the classic model to classify the BCC.Downloads
Published
2021-02-15
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.