Performance Analysis of Distributed Computing Frameworks for Big Data Analytics: Hadoop Vs Spark
DOI:
https://doi.org/10.13053/cys-24-2-3401Keywords:
Big data, parallel processing, distributed environments, distributed frameworks, Hadoop MapReduce, spark, big data analyticsAbstract
In the last one decade, the tremendous growth in data emphasizes big data storage and management issues with the highest priorities. For providing better support to software developers for dealing with big data problems, new programming platforms are continuously developing and Hadoop MapReduce is a big game-changer followed by Spark which sets the world of big data on fire with its processing speed and comfortable APIs. Hadoop framework emerged as a leading tool based on the MapReduce programming model with a distributed file system. Spark is on the other hand, recently developed big data analysis and management framework used to explore unlimited underlying features of Big Data. In this research work, a comparative analysis of Hadoop MapReduce and Spark has been presented on the basis of working principle, performance, cost, ease of use, compatibility, data processing, failure tolerance, and security. Experimental analysis has been performed to observe the performance of Hadoop MapReduce and Spark for establishing their suitability under different constraints of the distributed computing environment.Downloads
Published
2020-06-23
Issue
Section
Articles of the Thematic Issue
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.