Local Binary Ensemble based Self-training for Semi-supervised Classification of Hyperspectral Remote Sensing Images
DOI:
https://doi.org/10.13053/cys-24-2-3374Keywords:
Remote sensing, hyperspectral image analysis, machine learning, semi-supervised learning, self-training, ensemblesAbstract
Supervised classification of hyperspectral remote sensing images is still challenging due to the scarcity of enough labelled samples. Semi-supervised methods have been adopted to handle this issue. Self-training is a popular semi-supervised technique which is widely used for training a classifier with limited labelled data and a large quantity of unlabeled data. However, traditional self-training approaches often give poor classification results in high dimensional data. In the current work, a novel efficient self-training approach for handling the deficiency of labelled samples for semi-supervised classification of hyperspectral remote sensing images is proposed. The proposed method first trains an ensemble of locally specialized supervised binary classifiers independently by using the dimensionally reduced spectral feature vectors of few available labelled samples. The trained local binary classifiers are then used to extend the labelled set by iterative addition of highly informative unlabeled samples to it by exploiting both the spectral and spatial information of the hyperspectral image. The classifiers are then retrained with the extended dataset in a batchwise manner and the procedure is repeated until adequate quantity of labelled samples are generated. Finally, a supervised multiclass classifier is trained on the extended dataset to produce the final classification map. Experimental results on two benchmark hyperspectral image datasets prove the effectiveness of the proposed method over supervised and traditional self-training based semi-supervised pixelwise classification approach in terms of different classification measures.Downloads
Published
2020-06-23
Issue
Section
Articles of the Thematic Issue
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.