Measuring the Storing Capacity of Hyperdimensional Binary Vectors
DOI:
https://doi.org/10.13053/cys-26-2-3343Keywords:
Hyperdimensional computing, vector symbolic architectures, reduced representationsAbstract
Hyperdimensional computing is a model of computation based on the properties of high-dimensional vectors. It combines characteristics from artificial neural networks and symbolic computing. An area where hyperdimensional computing can be applied is natural language processing, where vector representations are already present in the form of word embedding models. However, hyperdimensional computing encodes information differently, its representations can include the distributional information of a word in a given context and it can also account for its semantic features. In this work, we investigate the storing capacity of hyperdimensional binary vectors. We present two different configurations in which semantic features can be encoded and measure how many can be stored, and later retrieved, within a single vector. The results presented in this work lay the foundation to develop a concept representation model with hyperdimensional computation.Downloads
Published
2022-06-15
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.