Word Embeddings for IoT Based on Device Activity Footprints
DOI:
https://doi.org/10.13053/cys-23-3-3276Keywords:
Word2Vec, IoT2Vec, word eEmbeddings, smart home, internet of things, natural language processingAbstract
With the expansion of IoT ecosystem, there is an explosion of the number of devices and sensors and the data generated by these devices. However, the tools available to analyze such data are limited. Word embeddings, widely used in the natural language processing (NLP) domain, provides a way to get similar words to the current word. In this paper, we extend the theory of word embeddings to the area of IoT devices, proposing a method to generate the word embeddings for IoT devices and sensors in a smart home based on their activity. We model IoT devices as vectors using a concept like Word2Vec and App2Vec, where the time between the device firings is also taken into account. These computed word embeddings can be used for a variety of use cases, such as to find similar devices in an IoT device store, or as a signature of each type of IoT device. We show results of a feasibility study on the CASAS dataset and a private real-world dataset of IoT device activity logs, using our method to identify the patterns in embeddings of various types of IoT devices in a household. We get a probability of more than 0.65 for similar types of devices clustering together, independent of session gap value and embedding vector size for the CASAS dataset. We also get a prob-ability of 0.4 on the private dataset, independent of session gap value and embedding vector size.Downloads
Published
2019-09-25
Issue
Section
Articles of the Thematic Issue
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.