Multi-Head Multi-Layer Attention to Deep Language Representations for Grammatical Error Detection
DOI:
https://doi.org/10.13053/cys-23-3-3271Keywords:
Multi-Head Multi-Language representations, grammatical error, detectionAbstract
It is known that a deep neural networkmodel pre-trained with large-scale data greatly improves the accuracy of various tasks, especially when there are resource constraints. However, the information needed to solve a given task can vary, and simplyusing the output of the final layer is not necessarily sufficient. Moreover, to our knowledge, exploiting large language representation models to detect grammatical errors has not yet been studied. In this work, we investigate the effect of utilizing information not only from the final layer but also from intermediate layers ofa pre-trained language representation model to detect grammatical errors. We propose a multi-head multi-layer attention model that determines the appropriate layers in Bidirectional Encoder Representation from Transformers (BERT). The proposed method achieved the best scoreson three datasets for grammatical error detection tasks, outperforming the current state of the art method by 6.0 points on FCE, 8.2 points on CoNLL14, and 12.2 pointson JFLEG in terms of F0.5. We also demonstrate that by using multi-head multi-layer attention, our model can exploit a broader range of information for each token in a sentence than a model that uses only the final layer’s information.Downloads
Published
2019-09-25
Issue
Section
Articles of the Thematic Issue
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.