Ontology-based Extractive Text Summarization: The Contribution of Instances
DOI:
https://doi.org/10.13053/cys-23-3-3270Keywords:
Extractive text summarization, ontologies, ontological instancesAbstract
In this paper, we present a text summarization approach focusing on multi-document, extractive and query-focused summarization that relies on an ontology-based semantic similarity measure, that specifically explores ontology instances. We employ the DBpedia Ontology and a theoretical definition of similarity to determine query-sentence and sentence-sentence similarity. Furthermore, we define an instance-linking strategy that builds the most accurate sentence representation possible while achieving a better coverage of sentences that can be represented by ontology instances. Using primarily this instances linking strategy, the semantic similarity measure and the Maximal Marginal Relevance Algorithm- MMR - we propose a summarization model that is capable of avoiding redundancy from a more fine-grained representation of sentences, due to the irrepresentation as ontology instances. We demonstrate that our summarizer is capable of achieving compelling results when compared with relevant DUC systems and recently published related studies using ROUGE metrics. Moreover, our experiments lead us to a better understanding of how ontology instances can be used to represent sentences and what is the role of said instances in this process.Downloads
Published
2019-09-25
Issue
Section
Articles of the Thematic Issue
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.