Central Embeddings for Extractive Summarization Based on Similarity
DOI:
https://doi.org/10.13053/cys-23-3-3256Keywords:
Extractive Summarization, prevalent ideas extraction, concept similarity, central embeddings, DUC 2002Abstract
In this work we propose using word embeddings combined with unsupervised methods suchas clustering for the multi-document summarization task of DUC (Document Understanding Conference) 2002. We aim to find evidence that semantic information is kept in word embeddings and this representation is subject to be grouped based on their similarity, so that main ideas can be identified in sets of documents. We experiment with different clustering methods to extract candidates for the multi-document summarization task. Our experiments show that our method is able to find the prevalent ideas. ROUGE measures of our experiments are similar to the state of the art, despite the fact that not all the main ideas are found; as our method does not require annotated resources, it provides a domain and language independent way to create a summary.Downloads
Published
2019-09-25
Issue
Section
Articles of the Thematic Issue
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.