Sentence Generation Using Selective Text Prediction
DOI:
https://doi.org/10.13053/cys-23-3-3252Keywords:
Text generation, sentence generation, context free grammar, CFG, hidden Markov model, HMM, selective text predictionAbstract
Text generation based on comprehensive datasets has been a well-known problem from several years. The biggest challenge is in creating a readable and coherent personalized text for specific user. Deep learning models have had huge success in the different text generation tasks such as script creation, translation, caption generation etc. Most of the existing methods require large amounts of data to perform simple sentence generation that may be used to greet the user or to give a unique reply. This research presents a novel and efficient method to generate sentences using a combination of Context Free Grammars and Hidden Markov Models. We have evaluated using two different methods, the first one is using a score similar to the BLEU score. The proposed implementation achieved 83% precision on the tweets dataset. The second method of evaluation being a subjective evaluation for the generated messages which is observed to be better than other methods.Downloads
Published
2019-09-25
Issue
Section
Articles of the Thematic Issue
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.