Joint Learning of Named Entity Recognition and Dependency Parsing using Separate Datasets
DOI:
https://doi.org/10.13053/cys-23-3-3247Keywords:
Joint learning, named entity recognition, dependency parsing, turkish.Abstract
Joint learning of different NLP-related tasks is an emerging research eld in Machine Learning. Yet, most of the recent models proposed on joint learning require a dataset that is annotated jointly for all the tasks involved. Such datasets are available only for frequently used languages. In this paper, we propose a novel BiLSTM CRF based joint learning model for dependency parsing and named entity recognition tasks, which has not been employed before for Turkish to the best of our knowledge. This enables joint learning of various tasks for languages that have limited amount of annotated datasets. Our model, tested on a frequently used NER dataset for Turkish, has comparable results with the state-of-the-art systems. We also show that our proposed model out performs the joint learning model which uses a single dataset.Downloads
Published
2019-09-25
Issue
Section
Articles of the Thematic Issue
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.