Reasoning over Arabic WordNet Relations with Neural Tensor Network
DOI:
https://doi.org/10.13053/cys-23-3-3240Keywords:
Arabic wordnet, natural language processing, neural tensor network, AraVec, word representation, word embeddingAbstract
Arabic WordNet is an important resource for many tasks of natural language processing. However, it suffers from many problems. In this paper, we address the problem of the unseen relationships between words in Arabic WordNet. More precisely, we focus on the ability for new relationships to be learned ‘automatically’ in Arabic WordNet from existing relationships. Using the Neural Tensor Network, we investigate how it can be an advantageous technique to fill the relationship gaps between Arabic WordNet words. With minimum resources, this model delivers meaningful results. The critical component is how to represent the entities of Arabic WordNet. For that, we use AraVec, a set of pre-trained distributed word representation for the Arabic language. We show how much it helps to use these vectors for initialization. We evaluated the model, using a number of tests which reveal that semantically-initialized vectors provide considerable greater accuracy than randomly initialized ones.Downloads
Published
2019-09-25
Issue
Section
Articles of the Thematic Issue
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.