Organization, Bot, or Human: Towards an Efficient Twitter User Classification
DOI:
https://doi.org/10.13053/cys-23-2-3192Keywords:
Social network analysis, twitter user classification, human vs. bot vs. organization, statistical-based approach, content-based approach, hybrid-based approachAbstract
Today, through Twitter, researchers propose approaches for classifying user accounts. However, they have to face confidence challenges owing to the diversity of the types of data propagated throughout Twitter. In addition, the messages from Twitter are imprecise, very short and even written in many dialects and languages. Moreover, the majority of the related works focus on the overall user’s activity, which makes them not suitable at the post-level classification. This paper presents an alternative approach for classifying user accounts as being accounts of bots, humans or organizations. The suggested approach consists in accurately classifying user accounts from one single post by leveraging a minimal number of language-independent features. We performed several experiments over a Twitter datasets and supervised learn-based algorithms. Our results demonstrated that simply using a minimal number of language-independent features extracted from one single post is sufficient to classify user accounts accurately and quickly. Our proposed approach yielded high F1-measure (>95%) and high AUC (>99%) using Random Forest.Downloads
Published
2019-06-28
Issue
Section
Articles of the Thematic Issue
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.