K-Means system and SIFT algorithm as a faster and more efficient solution for the detection of pulmonary tuberculosis
DOI:
https://doi.org/10.13053/cys-24-3-3120Keywords:
Image processing, K-Means, SIFT algorithm, machine learning, artificial intelligenceAbstract
Tuberculosis is a lethal disease that attacks the lungs in a similar way to COVID 19, according to the who, until 2018 there were more than 10 million people infected with tuberculosis and 1.5 million died with this disease. Artificial Intelligence algorithms allow to detect these diseases quickly and massively. We present an architecture to detect tuberculosis with image processing on lung radiographs, using the SIFT and K-means algorithms. We have tested the architecture with 300 radiographs, achieving 90.3% accuracy in classification.Downloads
Published
2020-09-29
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.