Estrous Cycle Classification through Automatic Feature Extraction
DOI:
https://doi.org/10.13053/cys-23-4-3095Keywords:
Estrous cycle, GLCM, machine learning, convolutional neural network, multilayer perceptron, SVMAbstract
We study and propose, for the first time, an autonomous classification of the estrous cycle (the reproductive cycle in rats). This cycle consists of 4 stages: Proestrus, Estrus, Metestrus and Diestrus. The short duration of the cycle in rats makes them an ideal model for research about changes that occur during the reproductive cycle. Classification is based on the cytology shown by vaginal smear. For this reason, we use manual and automatic feature extraction; these features are classified with support vector machines, multilayer perceptron networks and convolutional neural networks. A dataset of 412 images of estrous cycle was used. It was divided into two sets. The first contains all four stages, the second contains two classes. The first class is formed by the stages Proestrus and Estrus and the second class is formed by the stages Metestrus and Diestrus. The two sets were formed to solve the main problems, the research of the reproductive cycle and the reproduction control of rodents. For the first set, we obtained an 82% of validation accuracy and 98.38% of validation accuracy for the second set using convolutional neural networks. The results were validated through cross validation and F1 metric.Downloads
Additional Files
Published
2019-12-20
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.