Experimental Research on Encoder-Decoder Architectures with Attention for Chatbots
DOI:
https://doi.org/10.13053/cys-22-4-3060Keywords:
Chatbot, encoder-decoder, attention mechanismsAbstract
Chatbots aim at automatically offering a conversation between a human and a computer. While there is a long track of research in rule-based and retrieval-based approaches, the generation-based approaches are promisingly emerging solving issues like responding to queries in inference that were not previously seen in development or training time. In this paper, we offer an experimental view of how recent advances in close areas as machine translation can bead opted for chatbots. In particular, we compare how alternative encoder-decoder deep learning architectures perform in the context of chatbots. Our research concludes that a fully attention-based architecture is able to outperform the recurrent neural network baseline system.Downloads
Published
2018-12-31
Issue
Section
Articles of the Thematic Section
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.