A System for Brain Image Segmentation and Classification Based on Three-Dimensional Convolutional Neural Network
DOI:
https://doi.org/10.13053/cys-24-4-3058Keywords:
Brain tumor, segmentation, deep learning, convolutional neural networksAbstract
We consider the problem of fully automatic brain tumor segmentation in MR images containing glioblastomas. We propose a three-Dimensional Convolutional Neural Network (3D-CNN) approach that achieves high performance while being extremely efficient, a balance that existing methods have struggled to achieve. Our 3D-Brain CNN is formed directly on raw image modalities and thus learn a characteristic representation directly from the data. We propose a new cascading architecture with two pathways that each model normal details in tumors. Fully exploiting the convolutional nature of our model also allows us to segment a complete cerebral image in one minute. In experiments on the 2013 and 2015 BRATS challenge dataset; we exhibit that our approach is among the most powerful methods in the literature, while also being very effective.Downloads
Published
2020-12-07
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.