Enhancing Deep Learning Gender Identification with Gated Recurrent Units Architecture in Social Text
DOI:
https://doi.org/10.13053/cys-22-3-3036Keywords:
Author profiling, gender identification, deep learning, gated recurrent units (GRUs), twitter, facebookAbstract
Author profiling consists in inferring the authors’ gender, age, native language, dialects or personality by examining his/her written text. This paper represent an extension of the recursive neural network that employs a variant of the Gated Recurrent Units (GRUs) architecture. Our study focuses on gender identification based on Arabic Twitter and Facebook texts by investigating the examined texts features. The introduced exploiting a model that applies a mixture of unsupervised and supervised techniques to learn word vectors capturing the words syntactic and semantic. We applied our approach on two corpora of two social media varieties: twitter texts, in which each author is assigned at least 100 tweets, and Facebook corpus containing short texts with an average of 15.77 words per author. The obtained experimental results are comparable to the best findings provided by the best per-forming systems presented in PAN Lab at CLEF 2017.Downloads
Published
2018-09-29
Issue
Section
Articles of the Thematic Issue
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.