Empirical Study of the Associative Approach in the Context of Classification Problems
DOI:
https://doi.org/10.13053/cys-23-2-3026Keywords:
Recovery, classification, associative approach, neural networks, C4.5, SVM, imbalance, overlap, atypical patterns, Wilson, selective, SMOTEAbstract
Research carried out by the scientific community has shown that the performance of the classifiers depends not only on the learning rule, if not also on the complexities inherent in the data sets. Some traditional classifiers have been commonly used in the context of classification problems (three Neural Networks, C4.5, SVM, among others). However, the associative approach has been further explored in the recovery context, than in the classification task, and its performance almost has not been analyzed when several complexities in the data are presented. The present investigation analyzes the performance of the associative approach (CHA, CHAT and original Alpha Beta) when three classification problems occur (class imbalance, overlapping and a typical patterns). The results show that the CHAT algorithm recognizes the minority class better than the rest of the classifiers in the context of class imbalance. However, the CHA model ignores the minority class in most cases. In addition, the CHAT algorithm requires well-defined decision boundaries when Wilson’s method is applied, because of its performance increases. Also, it was noted that when a balance between the rates is emphasized, the performance of the three classifiers increase (RB, RFBR and CHAT). The original Alfa Beta model shows poor performance when pre-processing the data is done. The performance of the classifiers increases significantly when the SMOTE method is applied, which does not occur without a pre-processing or with a subsampling, in the context of the imbalance of the classes.Downloads
Published
2019-06-27
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.