An Efficient Framework to Detect Cracks in Rail Tracks Using Neural Network Classifier
DOI:
https://doi.org/10.13053/cys-22-3-3024Keywords:
Cracks, segmentation, classifier, rail tracks, train accidentsAbstract
The detection of defects or cracks in rail track plays an important role in railway management, which prevents train accidents in both summer and rainy seasons. During summer, the cracks are formed on the track which slips the train wheel. In rainy environment, the rail tracks are affected by corrosion which also produced cracks on it. Methods: In present method, the cracks or defects are detected Echo image display device or semi conduction magnetism sensor devices which consumes more time. The proposed method enhances the track image using adaptive histogram equalization technique and further features as Grey Level Co-occurrence Matrix (GLCM) and Local Binary Pattern (LBP) feature are extracted from the enhanced rail track image. These extracted features are trained and classified using neural network classifier which classifies the rail track image into either cracked or non-cracked image. The novelty of this work is to use soft computing approach for the detection of cracks in rail tracks. This methodology is trained by several crack images which are obtained from different environment. This method automatically classifies the current image based on the trained patterns, thus improves the classification accuracy. Findings: The performance of the proposed system achieves the accuracy rate of 94.9%, with respect to manually crack detected and segmented images.Downloads
Published
2018-09-25
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.