Subjectivity Detection in Nuclear Energy Tweets
DOI:
https://doi.org/10.13053/cys-21-4-2783Keywords:
Nuclear tweets, Deep Learning, Sentiment Analysis, Reinforcement LearningAbstract
The subjectivity detection is an important binary classification task that aims at distinguishing natural language texts as opinionated (positive or negative) and non-opinionated (neutral). In this paper, we develop and apply recent subjectivity detection techniques to determine subjective and objective tweets towards the hot topic of nuclear energy. This will further help us to detect the presence or absence of social media bias towards Nuclear Energy. In particular, significant network motifs of words and concepts were learned in dynamic Gaussian Bayesian networks, while using Twitter as a source of information. We use reinforcement learning to update each weight based on a probabilistic reward function over all the weights and, hence, to regularize the sentence model. The proposed framework opens new avenues in helping government agencies manage online public opinion to decide and act according to the need of the hour.Downloads
Published
2017-12-23
Issue
Section
Articles of the Thematic Issue
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.