Genetic Algorithm for Solving Multiple Traveling Salesmen Problem using a New Crossover and Population Generation
DOI:
https://doi.org/10.13053/cys-22-2-2764Keywords:
Genetic Algorithm, Multiple Traveling Salesman problem, Group Theory, Crossover operator, 2-opt mutation.Abstract
In this paper, we proposed a new crossover operator and a population initialization method for solving multiple traveling salesmen (MTSP) problem in genetic algorithm (GA) framework. The group theory based technique of intital population generation ensures the uniqueness of members in population, hence no redundancy in the search space and also remove the random initialization effect. The new crossover is based on the intuitive idea that the city in sub optimal / optimal tours occurs at same position. In this crossover the Hamming distance is preserved and there is very less chance to generate child same as members in the population, so diversity of the population is not much affected. For efficient representation of search space we exploited the multi-chromosome representation technique to encode the search space of MTSP. We evaluate and compare the proposed technique with the methods using crossover TCX, ORX +A, CYX +A and PMX +A reported in [35] for two standard objective functions of the MTSP, namely, minimising total travel cost of m tours of the m salesman and minimising the longest tour cast travel by any one salesman. Experimental results show that the GA with proposed population initialization and crossover gives better result compared to all four methods for second objective, however, in very few cases slightly degraded result for first objective.Downloads
Additional Files
Published
2018-06-29
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.